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Abstract 

Experimental design techniques play a crucial role in optimizing processes, particularly in 

resource-constrained environments. The Face-Centered Central Composite Design (FCCCD) is 

widely used for response surface modeling, but its performance when combining full and fractional 

portions remains underexplored. This study evaluates the performance of a Five-Variable Face-

Centered Central Composite Design (FCCCD) with full and fractional factorial points in process 

optimization. The objective is to compare the design efficiency, predictive accuracy, and reliability 

of both design types under varying experimental conditions. The study assesses design parameters, 

fit statistics, and optimality criteria using statistical metrics such as A-efficiency, D-efficiency, and 

G-efficiency. Model validation is performed to show if the model fits the data, and adequacy 

precision through residual versus predicted plots. The performance of FCCCD is analyzed in 

terms of model adequacy, predictive capability, and practical feasibility. The impact of center 

points on model fit is also investigated. The findings provide that the fractional factorial design 

demonstrates significant advantages in efficiency, achieving higher A-efficiency (25.20% versus 

18.55%) and D-efficiency (32.13% versus 12.06%) compared to the full factorial design. This 

makes it ideal for studies constrained by time, budget, or experimental resources. Despite its 

efficiency, it shows mild heteroscedasticity and non-linearity at the extremes of the response range, 

suggesting potential for further refinement. On the other hand, the full factorial design achieves 

superior G-efficiency (94.66% versus 80.59%), making it better suited for applications requiring 

extensive exploration of variable interactions and robust predictions. The fit statistics for FCCCD 

indicate strong model performance. The full factorial designs with 5 center points shows a 

moderate coefficient of variation of 38.65%, higher R2 (94.01%), strong adequacy precision 

(29.13), though, residual analysis suggests some non-linearity and heteroscedasticity. The 

fractional factorial designs (1 and 5 center points) exhibit lower coefficient of variation (18.38% 

and 17.89%), higher R2 (>98%), and excellent adequacy precision (>36), confirming stability and 

predictive accuracy. Residual plots reveal slight heteroscedasticity but overall model robustness. 

These findings offer valuable guidance for selecting appropriate experimental designs in process 

optimization. 

Keywords:  Face-Centered Central Composite Design, Process Optimization, Full Factorial, 

Fractional Factorial, Optimality Criteria 
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Introduction 

Process optimization plays a crucial role in industries such as manufacturing, chemical processing, 

and pharmaceuticals, where enhancing efficiency, improving product quality, and reducing 

operational costs are key priorities. As industrial processes grow increasingly complex, 

optimization techniques like Design of Experiments (DoE) and Response Surface Methodology 

(RSM) have become essential tools for researchers and engineers to analyze variable interactions 

and determine optimal process conditions. RSM, a widely used statistical approach, helps in 

constructing mathematical models that describe the relationships between input factors and 

response variables (Montgomery, 2017). Among the experimental designs in RSM, the Central 

Composite Design (CCD) is particularly effective, as it enables the development of predictive 

models that incorporate linear, quadratic, and interaction effects (Box & Draper, 1987). However, 

despite its effectiveness, CCD often demands a large number of experimental runs, making it both 

time-intensive and resource-demanding, which can pose challenges in real-world industrial 

applications. To mitigate the limitations associated with CCD, the Face-Centered Central 

Composite Design (FCCCD) has been introduced as a more efficient alternative. Unlike traditional 

CCD, FCCCD strategically positions its axial points on the faces of the experimental design space, 

thereby reducing the number of experimental runs required while still maintaining model accuracy 

(Anderson & Whitcomb, 2016). This makes FCCCD particularly beneficial in scenarios where 

resource efficiency is a primary concern. Additionally, FCCCD is frequently combined with full 

and fractional factorial designs to achieve a balance between experimental precision and cost-

effectiveness. Full factorial designs provide the highest accuracy by evaluating all possible factor 

combinations but require extensive time and resources. In contrast, fractional factorial designs 

significantly reduce the number of required runs by analyzing only a subset of factor combinations, 

although this efficiency gain comes at the risk of aliasing effects, which may obscure important 

interaction effects (Wu & Hamada, 2009). Despite its efficiency, the robustness of FCCCD in 

practical industrial settings is influenced by factors such as process variability, equipment 

inconsistencies, and external noise, which can impact optimization results. While FCCCD has 

gained popularity for its ability to minimize experimental burden, its effectiveness in handling 

real-world variability remains an area of active research. Ensuring that FCCCD, particularly in 

conjunction with full and fractional factorial designs, maintains both predictive accuracy and 

resource efficiency is crucial for its application in industrial process optimization. Studies indicate 

that variability and noise in industrial operations can significantly influence optimization 

outcomes, highlighting the need to assess FCCCD’s reliability and reproducibility under such 

conditions (Montgomery, 2017). In modern industries, there is an increasing demand for efficient 

optimization methods that improve productivity, enhance product quality, and lower operational 

expenses. While traditional designs like CCD offer valuable insights, their extensive experimental 

requirements can make them impractical in resource-constrained environments. FCCCD provides 

a more resource-efficient alternative, yet its integration with fractional factorial designs introduces 

challenges such as potential aliasing and information loss regarding critical effects. Furthermore, 

the impact of uncontrolled variability in industrial settings has not been extensively explored, 

leaving a gap in understanding FCCCD’s real-world applicability (Wu & Hamada, 2009). 
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Therefore, this study focused on assessing the efficiency and predictive accuracy of FCCCD when 

integrating full and fractional factorial designs in optimizing complex industrial processes. This 

research contributes to the advancement of modern process optimization methodologies that 

support industrial growth and economic efficiency. Effective optimization techniques help 

industries enhance competitiveness, minimize material waste, and create employment 

opportunities, ultimately promoting sustainable industrial development (Anderson & Whitcomb, 

2016). As industries continue to seek innovative and cost-effective solutions, the findings of this 

study will provide valuable insights into the potential of FCCCD as a practical and efficient 

approach to process optimization.  

Several studies have emphasized the advantages of integrating fractional factorial designs within 

response surface methodology (RSM). Alvarez et al. (2009) demonstrated that fractional factorial 

designs enhance experimental efficiency by reducing the number of runs while maintaining model 

accuracy. Their study reported improvements in A-efficiency and D-efficiency, indicating that 

fractional factorial designs optimize resources without compromising predictive performance. 

Similarly, Singh et al. (2017) compared Full Factorial and Fractional Factorial Designs, showing 

that fractional designs effectively manage multiple variables while maintaining accuracy, making 

them suitable for complex experimental setups. Kumar et al. (2018) used FCCCD in a five-variable 

machining process to improve surface roughness, demonstrating its capability to enhance process 

performance systematically. Patel et al. (2020) conducted a comparative study between FCCCD 

and traditional CCD, evaluating prediction accuracy and mean square error (MSE). Their findings 

confirmed that FCCCD outperforms CCD in optimization efficiency and is more robust against 

data variability, making it a preferred choice for industrial applications. Li et al. (2019) examined 

the impact of outliers on CCD and proposed robust regression techniques, such as the least absolute 

deviation (LAD) estimator, to mitigate distortions in model predictions. Li et al. (2020) extended 

this research by comparing FCCCD with BBD and PBD, demonstrating that FCCCD exhibits 

superior optimization efficiency and noise resistance, even in high-variability environments. These 

findings reinforce FCCCD’s applicability in scenarios where unpredictable factors influence 

process outcomes. Box and Wilson (1951) introduced CCD as a systematic approach for 

optimizing processes using quadratic response surfaces. Khuri and Cornell (1987) later evaluated 

FCCCD’s robustness in managing non-normality and unequal variance, demonstrating its 

adaptability across different data distributions. More recently, Iwundu and Cosmos (2022) 

explored the trade-offs between model complexity and efficiency in a seven-variable BBD, 

emphasizing the importance of selecting an optimal number of center points for improved model 

performance. Wu and Hamada (2000) compared FCCCD with other experimental designs, 

concluding that it remains a reliable and flexible approach for process optimization. Montgomery 

(2017) further highlighted FCCCD’s capability in addressing non-linear relationships while 

reducing errors and outliers. Similarly, Anderson and Whitcomb (2016) confirmed FCCCD’s 

robustness in managing variable interactions, making it ideal for experimental designs involving 

multiple influencing factors. Despite the wealth of research on FCCCD, an important gap remains 

regarding the integration of full and fractional factorial portions within FCCCD using different 

numbers of center points. While prior studies have explored FCCCD’s effectiveness, robustness, 
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and efficiency, none have explicitly examined how the combination of full and fractional factorial 

portions with 1 and 5 center points affects experimental outcomes. This gap presents an 

opportunity for further research to explore FCCCD’s potential in optimizing experimental designs 

while maintaining accuracy and resource efficiency. 

Materials and Methods 

Design 

This study utilized a Five-Variable Face-Centered Central Composite Design (FCCCD) to explore 

and optimize process conditions. The design incorporated: 

Full Factorial Points: Representing all combinations of factor levels (2𝐾), where  k is the number 

of factors. For five variables, this resulted in 25 = 32 experimental runs at high (+ 1) and low (- 1) 

levels. 

Fractional Factorial Points: A half-fractional factorial design (2𝐾−1)  was integrated to reduce 

the number of runs to 16 while capturing significant main effects and key interactions. 

Center Points: Center points (midpoint of factor ranges, coded as 0) were added to detect 

curvature and assess model robustness. Experiments with 1 and 5 center points were included for 

comparison. 

The FCCCD’s structure allowed exploration of linear, quadratic, and interaction effects while 

maintaining resource efficiency. 

Statistical Methods 

Key statistical methods and their respective formulas used for data analysis are detailed below: 

Optimality Criteria 

A-optimality: Measures the average variance of the predicted responses, minimizing parameter 

estimate variances. 

A = 
𝑇𝑟𝑎𝑐𝑒(𝑋𝑇𝑋)−1)

𝐾
  

 where X = design matrix, 

k = number of factors 

 D-optimality: Maximizes the determinant of the information matrix (𝑋𝑇𝑋), ensuring minimal 

parameter estimation variance. 

D = (det(𝑋𝑇𝑋))1 𝑘⁄  
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 G-optimality: Minimizes the maximum prediction variance across the design space. 

G = max( h(x), where h(x) = 𝑥𝑇(𝑋𝑇𝑋)−1𝑥 

Model Validation Metrics 

R-squared (R²): Measures the proportion of variance in the response variable explained by the 

model. 

𝑅2 = 1 − 
𝑆𝑆𝑅

𝑆𝑆𝑇
                                                                                                                                                                                                        

where:  

𝑆𝑆𝑅 is the sum of squares residuals (also known as sum of squared error). It measures the 

unexplained variability in the model. 

𝑆𝑆𝑇 is the total sum of squares, which represent the total variation in the observed data.  

However, 𝑅2 ranges between 0 and 1. Then, 𝑅2 = 1, indicates a perfect fit, where the model 

explains all the variability in the response variable. 𝑅2 = 0, indicates that the model does not 

explain any of the variability; the predictions are no better than the mean of the observed data. 

Also, 0 < 𝑅2 < 1, indicates the proportion of the variability in the dependent variable that is 

explained by the independent variables. Thus, the higher the 𝑅2 value, the better the model fits the 

data. 

Predicted R-squared (𝑅𝑝𝑟𝑒𝑑.
2 ): Evaluates the model’s predictive ability on new data. 

PRED. R2  (𝑅𝑝𝑟𝑒𝑑.
2 ) = 1 - 

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
                                                                                   

where: PRESS is Predicted Residual Error Sum of Squares = ∑ (𝑦𝑖 − �̂�{𝑖}).
2𝑛

𝑖−1                    

             SSTotal is the sum of squares total. 

However, a higher 𝑅𝑝𝑟𝑒𝑑.
2  close to 1 suggests that the model has a strong predictive accuracy, while 

a low 𝑅𝑝𝑟𝑒𝑑.
2  indicates that the model may not generalize well to new data. 

Adequacy Prediction: The adequacy precision evaluates the signal-to-noise ratio of a model. It 

helps to determine if the model’s predictions are reliable.  

Adequacy precision is defined as: 

Adequacy Precision =  
𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟
   =     

�̂�𝑚𝑎𝑥−�̂�𝑚𝑖𝑛

√
1

𝑛
∑ (𝑦𝑖−ŷ )2𝑛

𝑖=1

> 4                                                                                 
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where: Range of predicted values: Is the difference between the maximum and minimum predicted 

values, Average predicted error: Typically represented by the Root Mean Square Error (RMSE) 

yi = actual observed values, ŷ = predicted values from the model, n = number of data points 

(observations), Adequacy precision > 4: Suggests that the signal is much larger than the noise, 

meaning the model’s predictions are reliable.  

Adequacy precision < 4: Suggests that the noise (random error) in the data may be overwhelming 

the signal, implying that the model may not be very reliable.  

Alternatively; Adequacy Precision = 
𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
                                                                                                          

where; Signal represents the range of predicted responses over the design space, Noise represents 

the noise level, which is the average error or deviation from the predicted response.   

Residual Analysis: Residuals (𝑒𝑖) were analyzed to check normality and homoscedasticity. 

𝑒𝑖 = 𝑦𝑖 − 𝑦�̂� 

Graphs like Normal Plot of Residuals, Residuals vs. Predicted Plot, and Residuals vs. Run Plot 

were used to validate assumptions. 

Justification 

The selected FCCCD with full and fractional factorial points provided a robust framework to 

investigate linear, quadratic, and interaction effects. A-optimality, D-optimality, and G-optimality 

ensured precision, efficiency, and predictability, aligning with the study’s goal of optimizing 

complex processes. Model validation metrics and residual analysis guaranteed reliability and 

generalizability of results, ensuring minimal experimental runs without compromising accuracy. 

 

Models 

Full Quadratic Model 

The full quadratic model captures the linear, interaction, and quadratic effects of the factors. It is 

given as: 

𝑌 = 𝛽0 + ∑𝛽𝑖𝑥𝑖 + ∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀𝑖𝑗                                                                  

𝑖<𝑗

𝑘

𝑖=1
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where: Y: Dependent (response) variable, 𝛽0 : Intercept term, 𝛽𝑖  : Coefficient term, 𝛽𝑖𝑗   : 

Coefficients of interaction terms (where i ‡ 𝑗),  𝛽𝑖𝑖   : Coefficient of quadratic terms, 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 are 

the independent variables, 𝜀𝑖𝑗: Error terms 

Reduced Quadratic Model 

To improve efficiency and reduce complexity, insignificant terms are removed after statistical 

analysis. The reduced quadratic model includes only significant linear, interaction, and quadratic 

terms:   

𝑌 = 𝛽0 + ∑𝛽𝑖𝑥𝑖 + ∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑖𝑗

𝑘

𝑖=1

+  𝜀 

First-Order (Linear) Model 

The first-order model is used when there is no significant curvature in the response surface. It is 

given by: 

Y = 𝛽0 + ∑ 𝛽𝑖
𝑘
𝑖=1 𝑋𝑖 +  𝜖 

Second-Order (Pure Quadratic) Model 

The second-order model focuses on quadratic effects without interaction terms: 

Y = 𝛽0 + ∑ 𝛽𝑖𝑖
𝑘
𝑖=1 𝑋𝑖

2 + 𝜖 

Interaction Model 

This model focuses solely on the interaction terms between variables: 

Y = 𝛽0 + ∑ ∑ 𝛽𝑖𝑗
𝑘
𝑗=𝑖+1

𝑘
𝑖=1 𝑋𝑖𝑋𝑗 + 𝜖 

These models collectively allow for flexible analysis of linear, quadratic, and interaction effects in 

the FCCCD framework. Depending on the significance of factors and their combinations, the 

appropriate model is chosen for analysis and optimization. 

The fitted polynomial model, considering the five-variables X1, X2, X3, X4, X5 are as follow: 

Linear Terms: 

𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5                                                                   

Interaction Terms: 
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 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3 + 𝛽14𝑋1𝑋4  + 𝛽15𝑋1𝑋5  + 𝛽23𝑋2𝑋3 + 𝛽24𝑋2𝑋4 +
 𝛽25𝑋2𝑋5                                                                                                                                    

Quadratic Terms: 

𝛽11𝑋1
2 + 𝛽22𝑋2

2 + 𝛽33𝑋3
2 + 𝛽44𝑋4

2 + 𝛽55𝑋5
2                                                           

Bring equation 3.3, 3.4, and 3.5 together, they form the basis for fitting the model to the data and 

making predictions. Thus, the fitted quadratic (second-order) polynomial model can be written as: 

𝑦 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3 + 𝛽14𝑋1𝑋4  + 𝛽15𝑋1𝑋5  +
 𝛽23𝑋2𝑋3 + 𝛽24𝑋2𝑋4 + 𝛽25𝑋2𝑋5 + 𝛽11𝑋1

2 + 𝛽22𝑋2
2 + 𝛽33𝑋3

2 + 𝛽44𝑋4
2 + 𝛽55𝑋5

2              

This combination forms the regression model, where the design matrix X provides the structure 

for fitting the data, and the model equation captures the relationships among the factors and the 

response variable. Therefore, the model matrix associated with central composite design in k 

design variables for axial distance α and design size, N is represented in Algebraic form: 

X = 

[
 
 
 
 
 
 
 
 
 
 
 
 1
1
1
1
1
1
1
1
1
1
1
1
 

        

𝒙𝟏𝟏
𝒙𝟐𝟏

𝒙𝟑𝟏

⋮
𝒙𝒏𝟏
𝛼
𝛼
0
0
0
⋮
0
 

          

 𝒙𝟏𝟐 
…

  𝒙𝟐𝟐 …
𝒙𝟑𝟐 …

⋮
𝒙𝒏𝟐 …

0
0
𝛼
𝛼
0
⋮
0
 

       

𝒙𝟏𝒌
𝒙𝟐𝒌

𝒙𝟑𝒌

⋮
𝒙𝒏𝒌

0
0
0
0
𝛼
𝛼
0
 

       

  𝒙𝟏𝟏  
𝟐

𝒙𝟐𝟏  
𝟐

𝒙𝟑𝟏 
𝟐

⋮
𝒙𝒏𝟏

𝟐

𝛼2

𝛼2

0
0
⋮
0
 

     

   𝒙𝟏𝟐… 
𝟐

𝒙𝟐𝟐…
𝟐

𝒙𝟑𝟐…
𝟐

⋮
𝒙𝒏𝟐…

𝟐

0
0
𝛼2

𝛼2

0
⋮
0
 

     

𝒙𝟏𝒌
𝟐

 𝒙𝟐𝒌
𝟐

𝒙𝟑𝒌
𝟐

⋮
𝒙𝒏𝒌

𝟐

0
0
0
0
𝛼2

𝛼2

0 

     

𝒙𝟏𝟏𝒙𝟏𝟐
    𝒙𝟐𝟏𝒙𝟐𝟐

    𝒙𝟑𝟏𝒙𝟑𝟐

   
⋮

𝒙𝒏𝟏𝒙𝒏𝟐

0
0
0
0
0
⋮
0

       

 𝒙𝟏𝟏𝒙𝟏𝟑
  𝒙𝟐𝟏𝒙𝟐𝟑  

 𝒙𝟑𝟏𝒙𝟑𝟑

⋮
 𝒙𝒏𝟏𝒙𝒏𝟑

0
0
0
0
0
⋮
0
 

     

⋯
…
⋯

⋯

…

⋯

⋯
 

     

𝒙𝟏(𝒌−𝟏)𝒙𝟏𝒌

𝒙𝟐(𝒌−𝟏)𝒙𝟐𝒌   

𝒙𝟑(𝒌−𝟏)𝒙𝟑𝒌   

⋮
𝒙𝒏(𝒌−𝟏)𝒙𝒏𝒌  

0
0
0
0
0
⋮
0
 ]

 
 
 
 
 
 
 
 
 
 
 
 

     

…….     (3.7) 

where: 𝑋 is the design matrix, 𝑛 is the number of experimental runs, 𝐾 is the number of factors 

(independent variables), 𝑋𝑖𝑗 represents the level of factor j in run i. 

Hence, the design metrics are to optimize a response, efficient exploration of factors and their 

interactions, fitting a second-order polynomial model for prediction, reducing number of 

experimental runs needed, predicting system behavior based on the model, identifying optimal 

conditions for the process, and assessing robustness factor settings. 
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Results and Discussion 

The analysis results are presented in Tables 1 to 5 and Figures 1 to 4. For better clarity, the design 

efficiency values, fit statistics, and diagnostic properties of the full and fractional quadratic models 

are summarized under different center points to facilitate easy comparison. 

Table 1: Design Efficiency Values for FCCCD with 𝟐𝟓 and 𝟐𝑽
𝟓−𝟏 Factorial Designs  

FCCCD A-Efficiency D—Efficiency G-Efficiency 

𝟐𝟓 18.55% 12.06% 
 

94.66% 

𝟐𝑽
𝟓−𝟏 25.20% 32.13% 80.59% 

 

 

Table 2: Fit Statistics for FCCCD with 𝟐𝟓 Factorial Design and 1 Center Point 

Std.Dev.                                                                                                                           2042.01 

Mean                                                                                                                               5166,68 

C.V. %                                                                                                                                39.2 

R²                                                                                                                                      0.9401 

AdjustedR²                                                                                                                       0.9189 

PredictedR²                                                                                                                      0.8753 

 

Adequacy Precision                                                                                                        26.33 

 

Table 3: Fit Statistics for FCCCD with 25 Factorial Design and 5 Center Points 

 

Std.Dev.                                                                                                                         1929.32 

Mean                                                                                                                              4991.33 

C.V.%                                                                                                                                38.65 

R²                                                                                                                                      0.9401 

Adjusted R²                                                                                                                       0.9213 

Predicted R²                                                                                                                      0.8762 

 

Adequacy Precision                                                                                                           29.13 

 

Table 4: Fit Statistics for FCCCD with 𝟐𝑽
𝟓−𝟏  Factorial Design and 1 Center Point 

Std.Dev.                                                                                                                         665.37 

Mean                                                                                                                              3619.45 

C.V.%                                                                                                                                18.38 

R²                                                                                                                                      0.9828 
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AdjustedR²                                                                                                                       0.9694 

PredictedR²                                                                                                                      0.9066 

 

Adequacy Precision                                                                                                         36.9140 

 

 

Table 5: Fit Statistics for FCCCD with 𝟐𝑽
𝟓−𝟏  Factorial Design and 5 Center Points 

Std.Dev.                                                                                                                          663.03 

Mean                                                                                                                               3706.59 

C.V.%                                                                                                                             17.89 

R²                                                                                                                                      0.9807 

AdjustedR²                                                                                                                       0.9650 

PredictedR²                                                                                                                      0.9588 

 

Adequacy Precision                                                                                                         37.21 

 

 

Resiuals 

 

                                                                                                                                          Predicted 

 Figure 1: Residual Versus Predicted for FCCCD with 𝟐𝟓 Factorial Design and 1 Center 

Point. 
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Residual

 

 Figure 2: Residual Vs Predicted for FCCCD with 25 Factorial Design and 5 Center Points. 

 

Residuals 

 
                                                                              Predicted 

Figure 3: Residual Vs Predicted for FCCCD with 𝟐𝑽
𝟓−𝟏 Factorial Design and 1 Center Point. 
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Residual 

 
                                                                        Predicted 

Figure 4: Residual Vs Predicted for FCCCD with 𝟐𝑽
𝟓−𝟏 Factorial Design and 5 Center        

Points. 

Discussion of Findings 

The discussion delves into key findings from the design efficiency values, fit statistics, and residual 

analyses, highlighting the performance of both full and fractional factorial FCCCDs under varying 

conditions. The results provide valuable insights into the strengths and limitations of these designs, 

which are essential for process optimization and experimental planning. 

Design Efficiency Values 

The analysis of A-, D-, and G-efficiency values underscores the trade-offs between full and 

fractional factorial designs: 

1. A-Efficiency 

Fractional factorial designs exhibit higher A-efficiency (25.20%) compared to full factorial 

designs (18.55%), suggesting better resource utilization in estimating model coefficients. This is 

particularly advantageous in resource-constrained settings where fewer experimental runs are 

desired without compromising estimation precision. The fractional design's ability to isolate key 

variables efficiently positions it as a practical choice for exploratory studies or situations requiring 

economical experimentation. 
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2. D-Efficiency 

The significantly higher D-efficiency of fractional designs (32.13%) compared to full factorial 

designs (12.06%) indicates superior optimization for precise coefficient estimation. This highlights 

the practicality of fractional designs in applications where minimizing the number of runs is 

critical, such as time-sensitive or cost-intensive experiments. Fractional designs effectively 

balance experimental economy with accuracy in coefficient determination. 

3. G-Efficiency 

Full factorial designs outperform fractional designs in G-efficiency (94.66% vs. 80.59%), 

indicating better coverage of the design space and lower prediction variance. This robustness is 

vital for applications requiring comprehensive exploration and reliable predictions across a wide 

range of parameter values. However, the slightly lower G-efficiency of fractional designs is 

acceptable for targeted investigations focusing on key variables and interactions. 

Fit Statistics 

The fit statistics reveal strong model performance across both designs, but some areas warrant 

attention: 

1. High Predictive Power 

Both full and fractional designs exhibit high R² values (>94%), adjusted R² values (>91%), and 

predicted R² values (>87%). These metrics confirm the models’ strong ability to capture variability 

and make accurate predictions. Fractional designs also demonstrate slightly lower coefficient of 

variation (C.V.), suggesting more consistent predictions with fewer experimental runs. 

2. Precision and Reliability 

The adequacy precision values exceed the threshold of 4 for all designs, confirming reliable signal-

to-noise ratios. Fractional designs achieve higher precision, making them well-suited for efficient 

exploration and optimization in constrained scenarios. 

3. Moderate Variability 

The standard deviation and C.V. values for both designs indicate moderate variability. While 

acceptable, there is scope for refinement to reduce residual dispersion further, enhancing the 

models’ predictive accuracy and consistency. 

Residual Analysis 

The residuals versus predicted plots provide insights into the models’ adherence to assumptions: 

1. Heteroscedasticity in Full Factorial Designs 
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Residual patterns and funnel shapes suggest heteroscedasticity and non-linearity, indicating that 

the model does not fully capture relationships across the design space. These issues could lead to 

biased predictions and necessitate modifications such as transformations or additional interaction 

terms. 

2. Robustness in Fractional Factorial Designs 

Fractional designs show more random scatter of residuals around the zero line, meeting 

assumptions of linearity and homoscedasticity. This ensures reliable and unbiased predictions, 

particularly for targeted or resource-limited applications. However, mild heteroscedasticity in 

some regions suggests potential improvement through variance stabilization techniques. 

Strengths 

Fractional designs exhibit superior A- and D-efficiency, indicating better resource economy and 

precise coefficient estimation with fewer runs. High R² and adequacy precision values across all 

designs confirm strong explanatory and predictive power. 

Fractional designs provide consistent predictions (lower C.V.), making them ideal for applications 

with limited resources. 

Limitations 

Full factorial designs exhibit non-linearity and heteroscedasticity, necessitating model refinement 

to address prediction bias. 

Fractional designs’ slightly lower G-efficiency reflects limited design space coverage, which may 

affect reliability for exhaustive exploration. 

Conclusion 

The findings emphasize the trade-offs between full and fractional factorial FCCCDs. Fractional 

designs offer practical advantages in resource-limited or exploratory scenarios, excelling in 

efficiency and predictive accuracy. Full factorial designs, with their superior G-efficiency, are 

more suitable for comprehensive studies requiring robust predictions across a wide range of 

parameters. The insights provided guide the selection and refinement of experimental designs 

based on specific research goals and constraints. 
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